At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
The given function is a cosine function that has an output of 0 when the the input is [tex]\displaystyle \frac{\pi}{2}[/tex].
- The statement which is true is; A zero of the function is [tex]\displaystyle \underline{\left(\frac{\pi}{2} , \, 0 \right)}[/tex]
Reasons:
The given function is f(x) = 5·cos(x)
The characteristics of the function are;
The operator of the function is the cosine function
The general form of the cosine function is; y = A·cos(ω·x - Φ) + k
Where:
A = The amplitude of the function
[tex]\displaystyle The \ period = \mathbf{ \frac{2 \cdot \pi}{\omega}}[/tex]
[tex]\displaystyle The \ phase \ shift = \frac{\phi}{\omega}[/tex]
The vertical shift = k
Therefore, by comparison, we have;
The amplitude, A = 5
The period of the function = 2·π
The phase shift, Ф = 0
The vertical shift, k = 0
The zero of the function are given when the output of the function is 0,
which is found as follows;
[tex]f(x) = \mathbf{5 \cdot cos(x) }= 0[/tex]
cos(x) = 0
[tex]\displaystyle x = arcos(0) = \frac{\pi }{2}[/tex]
Which gives a zero of the function as; [tex]\displaystyle \underline{\left(\frac{\pi}{2} , \, 0 \right)}[/tex]
Learn more about the cosine function here:
https://brainly.com/question/13158551
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.