Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Kiran and Mai are trying to figure out if this equation is an identity, what do you think
and why?
(a - b)^4 = a^4 – 4a^3 b + 6a^²b^2 – 4ab^3 + b^4


Sagot :

Expanding the left side of the equation, it is found that since both sides are equal, yes, it is an identity.

An equality represents an identity if both sides are equal.

In this problem:

[tex](a - b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4[/tex]

Expanding the left side:

[tex](a - b)^2(a - b)^2 = a^4 - 4a^3b + 6a^2b^2 + 4ab^3 + b^4[/tex]

[tex](a^2 - 2ab + b^2)(a^2 - 2ab + b^2) = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4[/tex]

[tex]a^4 - 4a^3b + + 6a^2b^2 - 4ab^3 + b^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4[/tex]

Since both sides are equal, yes, it is an identity.

A similar problem is given at https://brainly.com/question/24866308