At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]\frac{(x-2)^2}{16}+\frac{(y-1)^2}{36}=1[/tex]
Step-by-step explanation:
Notice how the vertices are on the same x-coordinate and the endpoints of the minor axis are on the same y-coordinate. This indicates that the ellipse is vertical (meaning the ellipse has a vertical major axis of length [tex]2a[/tex]).
The equation for a vertical ellipse is [tex]\frac{(x-h)^2}{b^2}+\frac{(y-k)^2}{a^2}=1[/tex] where [tex](h,k)[/tex] is the center of the ellipse, [tex](h,k\pm a)[/tex] represents the coordinates of the vertices, and [tex](h\pm b,k)[/tex] represents the coordinates of the endpoints of the minor axis (also called co-vertices).
The value of [tex]h[/tex] is listed out for us as [tex]h=2[/tex].
The value of [tex]k[/tex] can be determined from taking the midpoint of the vertices. Because [tex]k=\frac{-5+7}{2}=1[/tex], then [tex]1-a=-5[/tex] and [tex]1+a=7[/tex] give us [tex]a=6[/tex].
Lastly, to figure out [tex]b[/tex], we solve the equations [tex]2+b=-2[/tex] and [tex]2-b=6[/tex] which both give [tex]b=-4[/tex] as the solution.
Now, plugging in all our values gives us [tex]\frac{(x-2)^2}{(-4)^2}+\frac{(y-1)^2}{6^2}=1[/tex] which translates to [tex]\frac{(x-2)^2}{16}+\frac{(y-1)^2}{36}=1[/tex].
Therefore, the final equation of the ellipse that satisfies the given conditions is [tex]\frac{(x-2)^2}{16}+\frac{(y-1)^2}{36}=1[/tex].
I've attached a graph of the ellipse with labels to help you visualize it.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.