Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Using the normal distribution and the central limit theorem, it is found that there is a 0.1896 = 18.96% probability that the average waiting time for a random sample of ten customers is between 4.0 and 4.2 minutes.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this problem:
- The mean is of 4.1 minutes, hence [tex]\mu = 4.1[/tex].
- The standard deviation is of 1.3 minutes, hence [tex]\sigma = 1.3[/tex].
- Sample of 10 customers, hence [tex]n = 10, s = \frac{1.3}{\sqrt{10}} = 0.411[/tex]
The probability is the p-value of Z when X = 4.2 subtracted by the p-value of Z when X = 4, hence:
X = 4.2
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{4.2 - 4.1}{0.411}[/tex]
[tex]Z = 0.24[/tex]
[tex]Z = 0.24[/tex] has a p-value of 0.5948.
X = 4
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{4 - 4.1}{0.411}[/tex]
[tex]Z = -0.24[/tex]
[tex]Z = -0.24[/tex] has a p-value of 0.4052.
0.5948 - 0.4052 = 0.1896
0.1896 = 18.96% probability that the average waiting time for a random sample of ten customers is between 4.0 and 4.2 minutes.
A similar problem is given at https://brainly.com/question/25779119
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.