Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
From the given figure ,
RECA is a quadrilateral
RC divides it into two parts
From the triangles , ∆REC and ∆RAC
RE = RA (Given)
angle CRE = angle CRA (Given)
RC = RC (Common side)
Therefore, ∆REC is Congruent to ∆RAC
∆REC =~ ∆RAC by SAS Property
⇛CE = CA (Congruent parts in a congruent triangles)
Hence , Proved
Additional comment:-
SAS property:-
"The two sides and included angle of one triangle are equal to the two sides and included angle then the two triangles are Congruent and this property is called SAS Property (Side -Angle-Side)
also read similar questions: Complete this proof. Given: EC AC, DB AC, ∠A = ∠F Prove: ΔMDF ∼ ΔNCA..
https://brainly.com/question/16250124?referrer
Consider the proof. Given: Segment AB is parallel to line DE. Prove: AD/DC = BE/EC What is the missing statement in Step 5? A.) AC = BC B.) AC/DC = BC/EC C.) AD...
https://brainly.com/question/11763540?referrer
Step-by-step explanation:
Given:
- RA ≅ RE
- EC ≅ AC
Also we observe that:
- RC ≅ CR as common side of both triangles
Since three sides of ΔREC and ΔRAC are congruent:
- ΔREC ≅ ΔRAC by SSS
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.