Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
[tex]2x^2+kx+5=0 \\ \\
a=2 \\ b=k \\ c=5 \\ \Delta=b^2-4ac=k^2-4 \times 2 \times 5=k^2-40[/tex]
When the discriminant Δ is greater than 0, the equation has 2 real solutions:
[tex]k^2-40 > 0 \\ k^2>40 \\ k>\sqrt{40} \ \lor \ k<-\sqrt{40} \\ k>2\sqrt{10} \ \lor \ k<-2\sqrt{10} \\ \boxed{k \in (-\infty,-2\sqrt{10}) \cup (2\sqrt{10}, +\infty)}[/tex]
When the discriminant Δ is less than 0, the equation has 2 complex and no real solutions:
[tex]k^2-40<0 \\ k^2<40 \\ k<\sqrt{40} \ \land \ k>-\sqrt{40} \\ k<2\sqrt{10} \ \land \ k>-2\sqrt{10} \\ \boxed{k \in (-2\sqrt{10},2\sqrt{10})}[/tex]
When the discriminant Δ is equal to 0, the equation has exactly 1 real solution:
[tex]k^2-40=0 \\ k^2=40 \\ k=\sqrt{40} \ \lor \ k=-\sqrt{40} \\ k=2\sqrt{10} \ \lor \ k=-2\sqrt{10} \\ \boxed{k \in \{ -2\sqrt{10}, 2\sqrt{10} \} }[/tex]
When the discriminant Δ is greater than 0, the equation has 2 real solutions:
[tex]k^2-40 > 0 \\ k^2>40 \\ k>\sqrt{40} \ \lor \ k<-\sqrt{40} \\ k>2\sqrt{10} \ \lor \ k<-2\sqrt{10} \\ \boxed{k \in (-\infty,-2\sqrt{10}) \cup (2\sqrt{10}, +\infty)}[/tex]
When the discriminant Δ is less than 0, the equation has 2 complex and no real solutions:
[tex]k^2-40<0 \\ k^2<40 \\ k<\sqrt{40} \ \land \ k>-\sqrt{40} \\ k<2\sqrt{10} \ \land \ k>-2\sqrt{10} \\ \boxed{k \in (-2\sqrt{10},2\sqrt{10})}[/tex]
When the discriminant Δ is equal to 0, the equation has exactly 1 real solution:
[tex]k^2-40=0 \\ k^2=40 \\ k=\sqrt{40} \ \lor \ k=-\sqrt{40} \\ k=2\sqrt{10} \ \lor \ k=-2\sqrt{10} \\ \boxed{k \in \{ -2\sqrt{10}, 2\sqrt{10} \} }[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.