Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Exponential Properties
- Exponential Property [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Property [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
Identify.
[tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg][/tex]
Step 2: Differentiate
- Simplify: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'[/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'[/tex]
- Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'[/tex]
- Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'[/tex]
- Derivative Rule [Basic Power Rule]: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)[/tex]
- Simplify: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}[/tex]
- Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.