Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the equation of the tangent line to the curve y=x^5 at x=2. Give the equation of the tangent line.

Sagot :

Answer:

(a)

The equation of the given curve is  y=x2−2x+7.

On differentiating with respect to x, we get: 

dxdy=2x−2

The equation of the line is 2x−y+9=0.⇒y=2x+9

This is of the form y=mx+c.

Slope of the line =2

If a tangent is parallel to the line 2x−y+9=0, then the slope of the tangent is equal to the slope of the line.

Therefore, we have: 2=2x−2

⇒2x=4⇒x=2

Now, at x=2

⇒y=22−2×2+7=7

Thus, the equation of the tangent passing through (2,7) is given by, 

y−7=2(x−2)

⇒y−2x−3=0

Hence, the equation of the tangent line to the given curve (which is parallel to line (2x−y+9=0) is y−2x−3=0.

(b)

The equation of the line is 5y−15x=13.

Slope of the line =3

If a tangent is perpendicular to the line 5y−15x=13, 

then the slope of the tangent is Slope of the line−1=3−1.

⇒dxdy=2x−2=3−1

We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.