At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Find the centre first by reoriganisation it into the form (x - cx)^2 + (y -cy)^2 = r^2
x^2 + y^2 + 6x -6y +5 = 0
(x + 3)^2 - 9 + (y - 3)^2 - 9 + 5 = 0
(x + 3)^2 + (y - 3)^2 = 13
The radius does not matter the centre is ( -3, +3)
The diameter must pass through the center so substituting into the equation for the line
2x-y+a = 0
-6 -3 + a = 0 so a = 9
The value of 'a' in the equation (2x - y + a = 0) is 0 and this can be determined by using the generalized equation of a circle.
Given :
Circle Equation -- [tex]x^2-2x+y^2-4y-4[/tex]
Line equation -- 2x - y + a = 0
First, convert the given equation of a circle in the generalized equation of a circle which is given by:
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where (a,b) represents the center of the circle and 'r' is the radius of the circle.
The generalized form of the given equation of a circle is:
[tex](x-1)^2-1+(y-2)^2-4-4=0[/tex]
[tex](x-1)^2+(y-2)^2=3^2[/tex]
So, the center of the circle is (1,2) and the radius is 3.
The center of the circle satisfy the line passing through it, that is:
2(1) - (2) + a = 0
a = 0
So, the value of a in the equation (2x - y + a = 0) is 0.
For more information, refer to the link given below:
https://brainly.com/question/23799314
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.