Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Find the centre first by reoriganisation it into the form (x - cx)^2 + (y -cy)^2 = r^2
x^2 + y^2 + 6x -6y +5 = 0
(x + 3)^2 - 9 + (y - 3)^2 - 9 + 5 = 0
(x + 3)^2 + (y - 3)^2 = 13
The radius does not matter the centre is ( -3, +3)
The diameter must pass through the center so substituting into the equation for the line
2x-y+a = 0
-6 -3 + a = 0 so a = 9
The value of 'a' in the equation (2x - y + a = 0) is 0 and this can be determined by using the generalized equation of a circle.
Given :
Circle Equation -- [tex]x^2-2x+y^2-4y-4[/tex]
Line equation -- 2x - y + a = 0
First, convert the given equation of a circle in the generalized equation of a circle which is given by:
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where (a,b) represents the center of the circle and 'r' is the radius of the circle.
The generalized form of the given equation of a circle is:
[tex](x-1)^2-1+(y-2)^2-4-4=0[/tex]
[tex](x-1)^2+(y-2)^2=3^2[/tex]
So, the center of the circle is (1,2) and the radius is 3.
The center of the circle satisfy the line passing through it, that is:
2(1) - (2) + a = 0
a = 0
So, the value of a in the equation (2x - y + a = 0) is 0.
For more information, refer to the link given below:
https://brainly.com/question/23799314
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.