Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Find the centre first by reoriganisation it into the form (x - cx)^2 + (y -cy)^2 = r^2
x^2 + y^2 + 6x -6y +5 = 0
(x + 3)^2 - 9 + (y - 3)^2 - 9 + 5 = 0
(x + 3)^2 + (y - 3)^2 = 13
The radius does not matter the centre is ( -3, +3)
The diameter must pass through the center so substituting into the equation for the line
2x-y+a = 0
-6 -3 + a = 0 so a = 9
The value of 'a' in the equation (2x - y + a = 0) is 0 and this can be determined by using the generalized equation of a circle.
Given :
Circle Equation -- [tex]x^2-2x+y^2-4y-4[/tex]
Line equation -- 2x - y + a = 0
First, convert the given equation of a circle in the generalized equation of a circle which is given by:
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where (a,b) represents the center of the circle and 'r' is the radius of the circle.
The generalized form of the given equation of a circle is:
[tex](x-1)^2-1+(y-2)^2-4-4=0[/tex]
[tex](x-1)^2+(y-2)^2=3^2[/tex]
So, the center of the circle is (1,2) and the radius is 3.
The center of the circle satisfy the line passing through it, that is:
2(1) - (2) + a = 0
a = 0
So, the value of a in the equation (2x - y + a = 0) is 0.
For more information, refer to the link given below:
https://brainly.com/question/23799314
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.