Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
If x is a real number such that x3 + 4x = 0 then x is 0”.Let q: x is a real number such that x3 + 4x = 0 r: x is 0.i To show that statement p is true we assume that q is true and then show that r is true.Therefore let statement q be true.∴ x2 + 4x = 0 x x2 + 4 = 0⇒ x = 0 or x2+ 4 = 0However since x is real it is 0.Thus statement r is true.Therefore the given statement is true.ii To show statement p to be true by contradiction we assume that p is not true.Let x be a real number such that x3 + 4x = 0 and let x is not 0.Therefore x3 + 4x = 0 x x2+ 4 = 0 x = 0 or x2 + 4 = 0 x = 0 orx2 = – 4However x is real. Therefore x = 0 which is a contradiction since we have assumed that x is not 0.Thus the given statement p is true.iii To prove statement p to be true by contrapositive method we assume that r is false and prove that q must be false.Here r is false implies that it is required to consider the negation of statement r.This obtains the following statement.∼r: x is not 0.It can be seen that x2 + 4 will always be positive.x ≠ 0 implies that the product of any positive real number with x is not zero.Let us consider the product of x with x2 + 4.∴ x x2 + 4 ≠ 0⇒ x3 + 4x ≠ 0This shows that statement q is not true.Thus it has been proved that∼r ⇒∼qTherefore the given statement p is true.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.