Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using a confidence interval of proportions, it is found that the correct option is:
A. approximately the same estimate but a smaller margin of error.
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which z is the z-score that has a p-value of [tex]\frac{1+\alpha}{2}[/tex].
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
- From this, it is taken that the margin of error is inversely proportional to the sample size, hence, increasing the sample from 250 to 1000 students, the margin of error will be smaller.
The sample size has no bearing on the estimate, hence, it stays the same, and option A is correct.
A similar problem is given at https://brainly.com/question/15043877
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.