Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the z-distribution, it is found that the 95% confidence interval for the true proportion of adults who said that they will travel more this year is (0.347, 0.433).
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which z is the z-score that has a p-value of [tex]\frac{1+\alpha}{2}[/tex].
195 out of 500 people said they would take more vacations this year than last year, hence:
[tex]n = 500, \pi = \frac{195}{500} = 0.39[/tex]
95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so [tex]z = 1.96[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.39 - 1.96\sqrt{\frac{0.39(0.61)}{500}} = 0.347[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.39 + 1.96\sqrt{\frac{0.39(0.61)}{500}} = 0.433[/tex]
The 95% confidence interval for the true proportion of adults who said that they will travel more this year is (0.347, 0.433).
A similar problem is given at https://brainly.com/question/15850972
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.