At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]csc(\theta)=\cfrac{1}{sin(\theta)}~\hspace{10em} sin(2\theta)=2sin(\theta)cos(\theta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \cfrac{csc^2(x)}{2cot(x)}=cot(2x) \\\\[-0.35em] ~\dotfill\\\\ \cfrac{csc^2(x)}{2cot(x)}\implies \cfrac{~~\frac{1}{sin^2(x)} ~~}{2\cdot \frac{cos(x)}{sin(x)}}\implies \cfrac{1}{sin^2(x)}\cdot \cfrac{sin(x)}{2cos(x)}\implies \cfrac{1}{2sin(x)cos(x)} \\\\\\ \cfrac{1}{sin(2x)}\implies csc(2x)[/tex]
Step-by-step explanation:
Recall that
[tex]\csc{x} = \dfrac{1}{\sin{x}}[/tex]
[tex]\cot{x} = \dfrac{1}{\tan{x}} = \dfrac{\cos{x}}{\sin{x}}[/tex]
so we can write the original expression as
[tex]\dfrac{\csc^2x}{2\cot{x}} = \dfrac{1}{\sin^2x}\cdot\dfrac{1}{2\cot{x}} = \dfrac{1}{\sin^2x}\cdot\dfrac{\sin{x}}{2\cos{x}}[/tex]
[tex]\:\:\:\:\:\:\:\:\:\:=\dfrac{1}{2\sin{x}\cos{x}}[/tex] (1)
But recall also the identity
[tex]2\sin{x}\cos{x} = \sin2{x}[/tex]
so we can rewrite Eqn(1) as
[tex]\dfrac{\csc^2x}{2\cot{x}} = \dfrac{1}{\sin2{x}} = \csc2{x}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.