Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The kinetic energy of the safe increases the force exerted by the concrete
to several times the weight of the safe.
- The magnitude of the force exerted on the safe by the concrete on the is approximately [tex]\underline{29.\overline 3 \, \mathrm{MN}}[/tex]
- The concrete exerts a force that is approximately 1,359.16 times the weight of the safe.
Reasons:
First part
The mass of the steel safe, m = 2,200 kg
Velocity of the safe just before it hits the concrete, v = 40 m/s
The amount by which the safe was compressed, d = 0.06 m
The kinetic energy, K.E., of the safe just before it hits the round is therefore;
[tex]\displaystyle K.E. = \mathbf{\frac{1}{2} \cdot m \cdot v^2}[/tex]
[tex]\displaystyle K.E._{safe} = \frac{1}{2} \times 2,200 \times 40^2 = 1,760,000 \ Joules[/tex]
Work done by concrete, W = Force, F × Distance, d
- [tex]\displaystyle Force, \, F = \mathbf{\frac{Work, \, W}{Distance, \, d}}[/tex]
By the law of conservation of energy, we have;
The work done by the concrete, W = The kinetic energy, K.E. given by the safe
W = K.E. = 1,760,000 J
The effect of the work = The change in the height of the safe
Therefore;
The distance, d, over which the force of the concrete is exerted = The change in the height of the safe = 0.06 m
d = 0.06 m
Therefore;
[tex]\displaystyle The \ force \ of \ the \ concrete, \, F = \frac{1,760,000\, J}{0.06 \, m} = 29,333,333. \overline 3 \, N = 29.\overline 3 \ MN[/tex]
- The force of the concrete on the safe = [tex]\underline{29.\overline 3 \ MN}[/tex]
Second part:
The gravitational force of the Earth on the safe, W = The weight of the safe
W = Mass, m × Acceleration due to gravity, g
W = 2,200 kg × 9.81 m/s² ≈ 21,582 N
The ratio of the force exerted by the concrete to the weight of the safe is found as follows;
[tex]\displaystyle Ratio \ of \ forces = \frac{29.\overline 3 \times 10^6 \, N}{21,582 \, N} = \frac{4,000,000}{2,943} \approx \mathbf{1359.16}[/tex]
- The force exerted by the concrete is approximately 1,359.16 times the weight of the safe.
Learn more here:
https://brainly.com/question/21060171
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.