Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

The perpendicular bisector of the line segment joining the points A (-8, 0) and B (8, 0) passes through a point (0,k). the value of k is

Sagot :

The steepness of a line is determined by its slope. The value of "k" is 0

First, we need to find the slope of the line passing through the points A (-8, 0) and B (8, 0) as shown:

[tex]m=\frac{y_2-y_1}{x_2-x_1}\\m=\frac{0-0}{8-(-8)}\\m=\frac{0}{16}\\m =0[/tex]

To get the value of k, we will equate the slope of the perpendicular line which is 0 to the slope of the line passing through A (-8, 0)  and (0, k)

[tex]m=\frac{y_2-y_1}{x_2-x_1}\\m=\frac{k-0}{0-8}\\m=\frac{k}{-8}\\0=\frac{k}{-8}\\k = 0[/tex]

Hence the value of "k" is 0

Learn more on  slope here: https://brainly.com/question/16949303

We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.