Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
Length of the shadow = 20.5 cm
Step-by-step explanation:
Given the 32-meter height of a tall building, and its casted shadow of 38 meters, we can find the unknown length of the shadow by using the Pythagorean Theorem.
Definition:
The Pythagorean Theorem states that the squared length of the hypotenuse of a right triangle is equal to the sum of the squared lengths of the legs.
The algebraic representation of the Pythagorean Theorem is:
c² (hypotenuse) = a² (leg₁) + b² (leg₂)
Solution
To solve for the given problem:
Let c = 38 m (distance from the top of the building to the tip of the shadow)
a = unknown length of the shadow
b = 32m (height of the building)
Since we have to solve for the value of a (unknown length of the shadow), we must algebraically solve for a:
c² = a² + b²
Subtract b² from both sides:
c² - b² = a² + b² - b²
a² = c² - b²
Substitute the given values into the formula for solving a :
a² = c² - b²
a² = (38)² - (32)²
a² = 1444 - 1024
a² = 1444 - 1024
Next, take the square root of both sides to solve for a:
[tex]\displaystyle\mathsf{\sqrt{(a)^2}\:=\:\sqrt{420}}[/tex]
a = 20.49 or 20.5 cm
Therefore, the length of the shadow is 20.5 cm.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.