Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
The rate constant for the decomposition of ethanol on an alumina surface is 24.00 × 10²⁵ M.
The rate law is: rate = 24.00 × 10²⁵ M/s
The integrated rate law is: [C₂H₅OH]t = [C₂H₅OH]₀ - 24.00 × 10²⁵ M/s × t
If the initial concentration of C₂H₅OH was 1.25 × 10²² M, the half-life is 2.60 × 10⁻⁵ s.
The time required for all the 1.25 × 10²² M C₂H₅OH to decompose is 5.21 × 10⁻⁵ s.
Let's consider the decomposition of ethanol on an alumina surface.
C₂H₅OH(g) ⇒ C₂H₄(g) + H₂O(g)
The plot of [A] vs time (t) resulted in a straight line, which indicates that the reaction follows zero-order kinetics.
The slope, 24.00 × 10²⁵ M/s, represents the rate constant, k.
What is zero-order kinetics?
It is a chemical reaction in which the rate of reaction is constant and independent of the concentration of the reacting substances
The rate law for zero-order kinetics is:
rate = 24.00 × 10²⁵ M/s
The integrated rate law for zero-order kinetics is:
[C₂H₅OH]t = [C₂H₅OH]₀ - 24.00 × 10²⁵ M/s × t
What is the half-life?
Is the time for the amount of substance to decrease by half.
If the initial concentration of C₂H₅OH was 1.25 × 10²² M, we can calculate the half-life [t(1/2)] using the following formula.
t(1/2) = [C₂H₅OH]₀ / 2 × k
t(1/2) = (1.25 × 10²² M) / 2 × (24.00 × 10²⁵ M/s) = 2.60 × 10⁻⁵ s
We can calculate the time required for all the 1.25 × 10²² M C₂H₅OH to decompose using the integrated rate law.
[C₂H₅OH]t = [C₂H₅OH]₀ - 24.00 × 10²⁵ M/s × t
0 M = 1.25 × 10²² M - 24.00 × 10²⁵ M/s × t
t = 5.21 × 10⁻⁵ s
The rate constant for the decomposition of ethanol on an alumina surface is 24.00 × 10²⁵ M.
The rate law is: rate = 24.00 × 10²⁵ M/s
The integrated rate law is: [C₂H₅OH]t = [C₂H₅OH]₀ - 24.00 × 10²⁵ M/s × t
If the initial concentration of C₂H₅OH was 1.25 × 10²² M, the half-life is 2.60 × 10⁻⁵ s.
The time required for all the 1.25 × 10²² M C₂H₅OH to decompose is 5.21 × 10⁻⁵ s.
Learn more about zero-order kinetics here: https://brainly.com/question/13314785
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.