Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]\begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \impliedby y=\stackrel{\stackrel{m}{\downarrow }}{\cfrac{1}{5}}x+7 \\\\[-0.35em] ~\dotfill[/tex]
[tex]\stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{\cfrac{1}{5}}\qquad \qquad \qquad \stackrel{reciprocal}{\cfrac{5}{1}}\qquad \stackrel{negative~reciprocal}{-\cfrac{5}{1}\implies -5}}[/tex]
so then line K has a slope of -5 and pass through (-1, -3)
[tex](\stackrel{x_1}{-1}~,~\stackrel{y_1}{-3})\qquad \qquad slope=m=-5 \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-3)}=\stackrel{m}{-5}[x-\stackrel{x_1}{(-1)}] \\\\\\ y+3=-5(x+1)\implies y+3=-5x-5\implies y=-5x-8[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.