Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the normal distribution, it is found that there is a 0.1357 = 13.57% probability that the total amount paid for these second movies will exceed $15.00.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- For n instances of a normal variable, the mean is [tex]n\mu[/tex] and the standard error is [tex]s = \sigma\sqrt{n}[/tex]
In this problem:
- Mean of $0.47, standard deviation $0.15, hence [tex]\mu = 0.47, \sigma = 0.15[/tex]
- 30 instances, hence [tex]n\mu = 30(0.47) = 14.1, s = 0.15\sqrt{30} = 0.8216[/tex]
The probability is 1 subtracted by the p-value of Z when X = 15, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
Considering the n instances:
[tex]Z = \frac{X - n\mu}{s}[/tex]
[tex]Z = \frac{15 - 14.1}{0.8216}[/tex]
[tex]Z = 1.1[/tex]
[tex]Z = 1.1[/tex] has a p-value of 0.8643.
1 - 0.8643 = 0.1357.
0.1357 = 13.57% probability that the total amount paid for these second movies will exceed $15.00.
A similar problem is given at https://brainly.com/question/25769446
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.