Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Using the normal distribution, it is found that there is a 0.1357 = 13.57% probability that the total amount paid for these second movies will exceed $15.00.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- For n instances of a normal variable, the mean is [tex]n\mu[/tex] and the standard error is [tex]s = \sigma\sqrt{n}[/tex]
In this problem:
- Mean of $0.47, standard deviation $0.15, hence [tex]\mu = 0.47, \sigma = 0.15[/tex]
- 30 instances, hence [tex]n\mu = 30(0.47) = 14.1, s = 0.15\sqrt{30} = 0.8216[/tex]
The probability is 1 subtracted by the p-value of Z when X = 15, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
Considering the n instances:
[tex]Z = \frac{X - n\mu}{s}[/tex]
[tex]Z = \frac{15 - 14.1}{0.8216}[/tex]
[tex]Z = 1.1[/tex]
[tex]Z = 1.1[/tex] has a p-value of 0.8643.
1 - 0.8643 = 0.1357.
0.1357 = 13.57% probability that the total amount paid for these second movies will exceed $15.00.
A similar problem is given at https://brainly.com/question/25769446
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.