Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

You are running a concession stand at a basketball game. You are selling hot dogs and sodas. Each hot dog costs $2.25 and each soda costs $1.50. At the end of the night, you made a total of $225.75. You sold a total of 126 hot dogs and sodas combined. You must report the number of hot dogs sold and the number of sodas sold. What equations did you use to solve this? How many hot dogs were sold and how many sodas were sold?

A.
x + y = 126 and 2.25x + 1.50y = 225.75 ; 49 hot dogs and 77 sodas.

B.
x + y = 126 and 2.25x + 1.50y = 225.75 ; 77 hot dogs and 49 sodas.

C.
2.25x + 1.50y = 126 and x + y = 225.75 : -283.5 hot dogs and 509.25 sodas.

D.
There is not enough information


Sagot :

The equations and the number of hotdogs and sodas sold are:  x+ y = 126 and 2.25x + 1.50y = 225.75 ; 49 hot dogs and 77 sodas.

Two equations can be derived from this question:

2.25x + 1.50y = 225.75 equation 1

x + y = 126 equation 2

Where:

x = number of hotdogs sold

y = number of soda sold

In order to determine the value of y, multiply equation 2 by 2.25

2.25x + 2.25y = 283.50 equation 3

Subtract equation 1 from 3

57.75 = 0.75y

y = 77

Substitute for y in equation 2

x + 77 = 126

x = 49

To learn more about simultaneous equations, please check: brainly.com/question/23589883

Answer:

The correct answer is A) x + y = 126 and 2.25x + 1.50y = 225.75 ; 49 hot dogs and 77 sodas

Step-by-step explanation:

hope this helps