Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
The binomial theorem says
[tex]\displaystyle (a + b)^n = \sum_{k=0}^n \binom nk a^{n-k} b^k \\\\(a+b)^n= \binom n0 a^n + \binom n1 a^{n-1}b + \cdots + \binom n{n-1} ab^{n-1} + \binom nn b^n[/tex]
where
[tex]\dbinom nk = \dfrac{n!}{k!(n-k)!}[/tex]
is the so-called binomial coefficient. The binomial coefficients follow a neat pattern called Pascal's triangle:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
where the n-th row, starting with n = 0, lists the coefficient of the k-th term in the sum (with 0 ≤ k ≤ n). For example,
[tex]\displaystyle n=0 \implies (a + b)^0 = \sum_{k=0}^0 \binom nk a^{0-k} b^k = \binom00 a^{0-0} b^0 = \underline{1}[/tex]
[tex]\displaystyle n=1 \implies (a + b)^1 = \sum_{k=0}^1 \binom 1k a^{1-k} b^k = \binom10 a^{1-0} b^0 + \binom11 a^{1-1}b^1 = \underline{1}a + \underline{1}b[/tex]
[tex]\displaystyle n=2 \implies (a + b)^2 = \sum_{k=0}^2 \binom 2k a^{2-k} b^k = \binom20a^{2-0}b^0+\binom21a^{2-1}b^1+\binom22a^{2-2}b^2 = \underline{1}a^2 + \underline{2}ab+\underline{1}b^2[/tex]
Each row starts and ends with 1, and every coefficient in between is obtained by adding the coefficients directly above and to the left. The next row, for instance, would be
1 1 + 4 4 + 6 6 + 4 4 + 1 1
or
1 5 10 10 5 1
which is to say,
[tex]\displaystyle (a + b)^5 = \underline{1}a^5+\underline{5}a^4b+\underline{10}a^3b^2+\underline{10}a^2b^3+\underline{5}ab^4+\underline{1}b^5[/tex]
In your case, we have (d - 4b)², so we take a, b, and n above with d, -4b, and 2, respectively:
[tex]\displaystyle (d - 4b)^2 = \sum_{k=0}^2 \binom 2k d^{2-k} (-4b)^k[/tex]
[tex]\displaystyle (d - 4b)^2 = \sum_{k=0}^2 \binom 2k (-4)^k d^{2-k} b^k[/tex]
[tex]\displaystyle (d - 4b)^2 = \binom20 (-4)^0 d^{2-0} b^0 + \binom21 (-4)^1 d^{2-1} b^1 + \binom22 (-4)^2 d^{2-2} b^2[/tex]
[tex]\displaystyle (d - 4b)^2 = 1\cdot1\cdot d^2\cdot1 + 2 \cdot (-4) d \cdot b + 1 \cdot 16 \cdot 1 \cdot b^2[/tex]
[tex]\boxed{(d - 4b)^2 = d^2 - 8bd + 16b^2}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.