Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Using the z-distribution, we have that:
a) A sample of 601 is needed.
b) A sample of 93 is needed.
c) A. Yes, using the additional survey information from part (b) dramatically reduces the sample size.
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which z is the z-score that has a p-value of [tex]\frac{1+\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level, hence[tex]\alpha = 0.95[/tex], z is the value of Z that has a p-value of [tex]\frac{1+0.95}{2} = 0.975[/tex], so [tex]z = 1.96[/tex].
For this problem, we consider that we want it to be within 4%.
Item a:
- The sample size is n for which M = 0.04.
- There is no estimate, hence [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.04 = 1.96\sqrt{\frac{0.5(0.5)}{n}}[/tex]
[tex]0.04\sqrt{n} = 1.96\sqrt{0.5(0.5)}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.5(0.5)}}{0.04}[/tex]
[tex](\sqrt{n})^2 = \left(\frac{1.96\sqrt{0.5(0.5)}}{0.04}\right)^2[/tex]
[tex]n = 600.25[/tex]
Rounding up:
A sample of 601 is needed.
Item b:
The estimate is [tex]\pi = 0.96[/tex], hence:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.04 = 1.96\sqrt{\frac{0.96(0.04)}{n}}[/tex]
[tex]0.04\sqrt{n} = 1.96\sqrt{0.96(0.04)}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.96(0.04)}}{0.04}[/tex]
[tex](\sqrt{n})^2 = \left(\frac{1.96\sqrt{0.96(0.04)}}{0.04}\right)^2[/tex]
[tex]n = 92.2[/tex]
Rounding up:
A sample of 93 is needed.
Item c:
The closer the estimate is to [tex]\pi = 0.5[/tex], the larger the sample size needed, hence, the correct option is A.
For more on the z-distribution, you can check brainly.com/question/25404151
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.