The absolute difference between the greatest and the least of these three numbers in the arithmetic sequence is 10.
The sequence is an arithmetic sequence. Therefore,
d = common difference
let
a = centre term
Therefore, the 3 consecutive term will be as follows
a - d, a, a + d
a - d + a + a + d = 27
3a = 27
a = 27 / 3
a = 9
Therefore,
(a-d)² + (a)² + (a + d)² = 293
(a²-2ad+d²) + 9² + (a² + 2ad + d²) = 293
(81 - 18d + d²) + 81 + (81 + 18d + d²) = 293
243 + 2d² = 293
2d² = 50
d² = 50 / 2
d = √25
d = 5
common difference = 5
Therefore, the 3 numbers are as follows
9 - 5 , 9, 9 + 5 = 4, 9, 14
The difference between the greatest and the least of these 3 numbers are as follows:
14 - 4 = 10
learn more on Arithmetic progression: https://brainly.com/question/25749583?referrer=searchResults