Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Using the binomial distribution, it is found that:
- The expected value is of 2.4.
- The standard deviation is of 0.76.
- The distribution is given by the histogram.
For each person, there are only two possible outcomes, either they prefer saving, or they prefer spending. The preferences of each person are independent of any other person, hence, the binomial distribution is used to solve this question.
Binomial probability distribution
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
The expected value is:
[tex]E(X) = np[/tex]
The standard deviation is:
[tex]\sqrt{V(X)} = \sqrt{np(1 - p)}[/tex]
In this problem:
- 60% prefer saving over spending, hence [tex]p = 0.6[/tex]
- 4 adults are selected, hence [tex]n = 4[/tex].
Then:
[tex]E(X) = np = 4(0.6) = 2.4[/tex]
[tex]\sqrt{V(X)} = \sqrt{np(1 - p)} = \sqrt{2.4(0.6)(0.4)} = 0.76[/tex]
The histogram is sketched at the end of the answer.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.