At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using algebraic equations:
the number of sessions that will give same cost for both plans is: 1
the cost is: $96
Translate the situation into algebraic equations.
- Let y = Total cost
- x = number of sessions
Equation for total cost of the first plan:
y = 41x + 55
Equation for the total cost of the second plan:
y = 46x + 50
To find the number of sessions that would yield same cost for both plans, make both equations equal to each other and solve for x.
41x + 55 = 46x + 50
- Combine like terms together
41x - 46x = - 55 + 50
-5x = -5
x = 1
For a session, both plans will yield the same cost.
The cost 1 session will yield for both:
41x + 55 = 46x + 50
- Plug in the value of x
41(1) + 55 = 46(1) + 50
96 = 96
Therefore, using algebraic equations:
the number of sessions that will give same cost for both plans is: 1
the cost is: $96
Learn more about algebraic equations on:
https://brainly.com/question/10612698
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.