Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Using the normal approximation to the binomial, it is found that there is a 0.9319 = 93.19% probability that fewer than 260 are women.
In a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- It measures how many standard deviations the measure is from the mean.
- After finding the z-score, we look at the z-score table and find the p-value associated with this z-score, which is the percentile of X.
- The binomial distribution is the probability of x successes on n trials, with p probability of a success on each trial. It can be approximated to the normal distribution with [tex]\mu = np, \sigma = \sqrt{np(1-p)}[/tex].
In this problem:
- Women comprise 83.3% of all elementary school teachers, hence [tex]p = 0.833[/tex]
- A sample of 300 teachers is taken, hence [tex]n = 300[/tex]
The mean and the standard deviation for the approximation are given by:
[tex]\mu = np = 300(0.833) = 249.9[/tex]
[tex]\sigma = \sqrt{np(1 - p)} = \sqrt{300(0.833)(0.167)} = 6.46[/tex]
Using continuity correction, as the binomial distribution is discrete and the normal distribution is continuous, the probability that fewer than 260 are women is P(X < 260 - 0.5) = P(X < 259.5), which is the p-value of Z when X = 259.5, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{259.5 - 249.9}{6.46}[/tex]
[tex]Z = 1.49[/tex]
[tex]Z = 1.49[/tex] has a p-value of 0.9319.
0.9319 = 93.19% probability that fewer than 260 are women.
A similar problem is given at https://brainly.com/question/25347055
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.