Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Write the equation for each transformation of f(x)= |x| described below.

a. translate left 9 units, stretch vertically by a factor of 5, and translate down 23 units.

b. translate left 12 units, stretch horizontally by a factor of 4, and reflect over the x-axis.

need steps don't understand how to do!


Sagot :

okay, original equation of an absolute value function is: 
a. f(x) = a |x-h| + k
a is the stretch or shrink
h is horizontal movement (watch the negative!!) 
k is vertical shift
 
Translate left 9 units means horizontal shift so the h changes. When you move to the left, the numbers become negative so y = a|x-(-9)| + k which becomes
 y = a|x+9| + k Then the vertical stretch of 5 becomes y = 5|x+9| + k And then a translation down 23 units means a negative shift down (which is your vertical shift) so:
f(x) = 5(x+9) - 23

b. translate left 12 units meaning a negative horizontal shift. y = a|x-(-12)| + k
so then it becomes y = a|x+12| + k
a stretch horizontally by 4 is your a, so y = 4|x+12| (you can just forget about the k since there is no vertical shift so your k = 0)
a reflection over the x-axis means that your horizontal axis is taken and folded and the reflection from the graph is your new graph. So basically, the whole equation becomes negative. 
y = -4|x+12|