Answered

Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

In stars mor massive than the sun, fusion continues until the core is almost all....

Sagot :

In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.

Most of the fusion occurs in the core.

In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.

Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.

Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.

After the core is almost entirely iron, the star is no longer in the Main Sequence.

So, fusion in stars more massive than the sun continue fusing until the core is almost entirely iron.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.