At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

how do you find the equation of the line in standard form that is perpendicular to the line y=3x+2 and passes through (-1, 5)

please help!!!


Sagot :

jpmg2k
A perpendicular line has a slope that is the negative reciprocal of the line it's crossing. The negative reciprocal of 3 is -(1/3). 

y=mx+b
5=-(1/3)(1)+b
5=(1/3)+b
4(2/3)=b

your final answer is:
y=(1/3)x+4(2/3)
naǫ
[tex]y=mx+b \perp y=3x+2 \\ \Downarrow \hbox{the product of the slopes is -1} \\ m \times 3=-1 \\ m=-\frac{1}{3} \\ y=-\frac{1}{3}x+b \\ \\ (-1,5) \\ x=-1 \\ y=5 \\ \Downarrow \\ 5=-\frac{1}{3} \times (-1) + b \\ 5=\frac{1}{3}+b \\ 5-\frac{1}{3}=b \\ \frac{15}{3}-\frac{1}{3}=b \\ b=\frac{14}{3} \\ y=-\frac{1}{3}x+\frac{14}{3} \\ \\ y=-\frac{1}{3}x+\frac{14}{3} \\ \frac{1}{3}x+y=\frac{14}{3} \ \ \ |\times 3 \\ \boxed{x+3y=14}[/tex]