Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Jacob's college savings are invested in a bond that pays an annual interest of 6.2% compounded continuously. How long will it take for the money to triple?

Sagot :

So you have some initial amount x and we want to know how long it will take with compound interest to triple our original amount x (so 3x). The equation sets up like 3x(the amount we want)= x(original amount) times 1.062(the interest increase)^t So 3x=x(1.062)^t where t is the amount of years. When you divide both sides by x it cancels out and you end up with 3=1.062^t. Take the natural log of both sides. Ln(3) = Ln(1.062^t) and the t being an exponent can come in front of the the natural log. Ln(3) = t(Ln(1.062)) Divide both sides by (Ln(1.062)),. Ln(3)/Ln(1.062)=t. And you should just plug that into a calculator to find t.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.