Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
[tex]\frac{4 + i}{3 - 2i} \\\\ = \frac{(4 + i)(3 + 2i)}{(3 - 2i)(3 + 2i)} \text{ (rationalising the denominator) } \\\\ = \frac{12 + 3i + 8i + 2i^2}{9 - 6i + 6i - 4i^2} \\\\ = \frac{12 + 11i + 2i^2}{9 - 4i^2} \\\\ = \frac{12 + 11i + 2(-1)}{9 - 4(-1)} \\\\ = \frac{10 + 11i}{13} \\\\ = \frac{10}{13} + \frac{11}{13}i[/tex]
[tex]Use:(a-b)(a+b)=a^2-b^2\\-------------------------\\\\\frac{4+i}{3-2i}=\frac{4+i}{3-2i}\cdot\frac{3+2i}{3+2i}=\frac{(4+i)(3+2i)}{(3-2i)(3+2i)}=\frac{4(3)+4(2i)+i(3)+i(2i)}{3^2-(2i)^2}\\\\=\frac{12+8i+3i+2i^2}{9-2^2i^2}=\frac{12+11i+2(-1)}{9-4(-1)}=\frac{12+11i-2}{9+4}=\frac{10+11i}{13}\\\\=\boxed{\frac{10}{13}+\frac{11}{13}i}\\\\z=a+bi\Rightarrow a=\frac{10}{13}\ and\ b=\frac{11}{13}[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.