Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Rewrite 4+i over 3-2i in the form a+bi, where a and b are rational numbers. please show steps, reviewing for exams and have no clue how to do.

Sagot :

[tex]\frac{4 + i}{3 - 2i} \\\\ = \frac{(4 + i)(3 + 2i)}{(3 - 2i)(3 + 2i)} \text{ (rationalising the denominator) } \\\\ = \frac{12 + 3i + 8i + 2i^2}{9 - 6i + 6i - 4i^2} \\\\ = \frac{12 + 11i + 2i^2}{9 - 4i^2} \\\\ = \frac{12 + 11i + 2(-1)}{9 - 4(-1)} \\\\ = \frac{10 + 11i}{13} \\\\ = \frac{10}{13} + \frac{11}{13}i[/tex]
[tex]Use:(a-b)(a+b)=a^2-b^2\\-------------------------\\\\\frac{4+i}{3-2i}=\frac{4+i}{3-2i}\cdot\frac{3+2i}{3+2i}=\frac{(4+i)(3+2i)}{(3-2i)(3+2i)}=\frac{4(3)+4(2i)+i(3)+i(2i)}{3^2-(2i)^2}\\\\=\frac{12+8i+3i+2i^2}{9-2^2i^2}=\frac{12+11i+2(-1)}{9-4(-1)}=\frac{12+11i-2}{9+4}=\frac{10+11i}{13}\\\\=\boxed{\frac{10}{13}+\frac{11}{13}i}\\\\z=a+bi\Rightarrow a=\frac{10}{13}\ and\ b=\frac{11}{13}[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.