At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer: Choice D.
Morgan forgot to distribute the negative sign to two of the terms in the second expression.
=============================================================
Explanation:
Focus on the numerators.
We have (3t^2-4t+1) as the first numerator and we subtract off (t^2+2t+2) as the second numerator.
Morgan needs to simplify (3t^2-4t+1)-(t^2+2t+2) for the numerator.
Mistakenly, she had these steps
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2+2t+2 .... her mistake made here
(3t^2-t^2)+(-4t+2t)+(1+2)
2t^2-2t+3
All of this applies to the numerator. The denominator stays at t+3 the entire time. So effectively we can ignore it on a temporary basis.
Here's what Morgan should have for her steps when simplifying the numerator.
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2-2t-2 ..... distribute the negative
(3t^2-t^2)+(-4t-2t)+(1-2)
2t^2-6t-1
Note in the second step, the negative outside flips the sign of each term in the second parenthesis.
Therefore,
[tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}\\\\\frac{(3t^2-4t+1)-(t^2+2t+2)}{t+3}\\\\\frac{3t^2-4t+1-t^2-2t-2}{t+3}\\\\\frac{2t^2-6t-1}{t+3}\\\\[/tex]
which means [tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}=\frac{2t^2-6t-1}{t+3}, \ \ \text{ where } t \ne -3\\\\[/tex]
Side notes:
- The fractions can only be subtracted since the denominators are the same.
- We have [tex]t \ne -3[/tex] to avoid a division by zero error.
- Rational expressions are a fraction, or ratio, of two polynomials.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.