Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer: Choice D.
Morgan forgot to distribute the negative sign to two of the terms in the second expression.
=============================================================
Explanation:
Focus on the numerators.
We have (3t^2-4t+1) as the first numerator and we subtract off (t^2+2t+2) as the second numerator.
Morgan needs to simplify (3t^2-4t+1)-(t^2+2t+2) for the numerator.
Mistakenly, she had these steps
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2+2t+2 .... her mistake made here
(3t^2-t^2)+(-4t+2t)+(1+2)
2t^2-2t+3
All of this applies to the numerator. The denominator stays at t+3 the entire time. So effectively we can ignore it on a temporary basis.
Here's what Morgan should have for her steps when simplifying the numerator.
(3t^2-4t+1)-(t^2+2t+2)
3t^2-4t+1-t^2-2t-2 ..... distribute the negative
(3t^2-t^2)+(-4t-2t)+(1-2)
2t^2-6t-1
Note in the second step, the negative outside flips the sign of each term in the second parenthesis.
Therefore,
[tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}\\\\\frac{(3t^2-4t+1)-(t^2+2t+2)}{t+3}\\\\\frac{3t^2-4t+1-t^2-2t-2}{t+3}\\\\\frac{2t^2-6t-1}{t+3}\\\\[/tex]
which means [tex]\frac{3t^2-4t+1}{t+3}-\frac{t^2+2t+2}{t+3}=\frac{2t^2-6t-1}{t+3}, \ \ \text{ where } t \ne -3\\\\[/tex]
Side notes:
- The fractions can only be subtracted since the denominators are the same.
- We have [tex]t \ne -3[/tex] to avoid a division by zero error.
- Rational expressions are a fraction, or ratio, of two polynomials.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.