Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Expanding the given expression and substituting the given values of [tex]\dfrac{p}{q}[/tex] with [tex]\dfrac{q}{r}[/tex] proves that the given equation
Correct response:
[tex]The \ expression \ p^3 + q^3 + r^3 \ is \ equal \ to \ \left(\dfrac{1}{p^3} + \dfrac{1}{q^3} +\dfrac{1}{r^3} \right) \cdot p^2 \cdot q^2 \cdot r^2 \ by \ subtituting[/tex]
[tex]\dfrac{p}{q} = \dfrac{q}{r}[/tex]
Method used to prove that the expression are equal
The given relation is;
[tex]\dfrac{p}{q} = \mathbf{\dfrac{q}{r}}[/tex]
The given equation is presented as follows;
[tex]p^3 + q^3 + r^3 = \mathbf{\left(\dfrac{1}{p^3} + \dfrac{1}{q^3} + \dfrac{1}{r^3} \right) \cdot p^2 \cdot q^2 \cdot r^2}[/tex]
Expanding the right hand side gives;
[tex]\dfrac{p^2 \cdot q^2 \cdot r^2}{p^3} + \dfrac{p^2 \cdot q^2 \cdot r^2}{q^3} + \dfrac{p^2 \cdot q^2 \cdot r^2}{r^3} = \mathbf{ \dfrac{q^2 \cdot r^2}{p} + \dfrac{p^2 \cdot r^2}{q} + \dfrac{p^2 \cdot q^2 }{r}}[/tex]
[tex]\dfrac{q^2 \cdot r^2}{p} + \dfrac{p^2 \cdot r^2}{q} + \dfrac{p^2 \cdot q^2 }{r} = \mathbf{ \dfrac{q}{p} \cdot q \cdot r^2 + \dfrac{p}{q} \cdot p \cdot r^2+\dfrac{q}{r} \cdot p^2 \cdot q }[/tex]
[tex]\dfrac{q}{p} \cdot q \cdot r^2 + \dfrac{p}{q} \cdot p \cdot r^2+\dfrac{q}{r} \cdot p^2 \cdot q } = \dfrac{r}{q} \cdot q \cdot r^2 + \dfrac{q}{r} \cdot p \cdot r^2+\dfrac{p}{q} \cdot p^2 \cdot q } = \mathbf{ r^3 + q \cdot p \cdot r + p^3}[/tex]
From the given relation, we have;
p·r = q²
Therefore;
q·p·r = q × q² = q³
Which gives;
r³ + q·p·r + p³ = r³ + q³ + p³
Which gives;
[tex]\left(\dfrac{1}{p^3} + \dfrac{1}{q^3} + \dfrac{1}{r^3} \right) \cdot p^2 \cdot q^2 \cdot r^2 = p^3 + q^3 + r^3[/tex]
By symmetric property, therefore;
- [tex]\underline{p^3 + q^3 + r^3 = \left(\dfrac{1}{p^3} + \dfrac{1}{q^3} +\dfrac{1}{r^3} \right) \cdot p^2 \cdot q^2 \cdot r^2}[/tex]
Learn more about the substitution and properties of equality here:
https://brainly.com/question/13805324
https://brainly.com/question/17449824
https://brainly.com/question/11388301
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.