Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
We need to integrate
- 3x^2-10-x+9=3x^3-x-1
[tex]\\ \tt\Rrightarrow {\displaystyle{\int}_{-3}^{-2}}3x^2-x-1[/tex]
[tex]\\ \tt\Rrightarrow \left[\dfrac{3}{4}x^4-\dfrac{x^2}{2}-x\right]_{-3}^{-2}[/tex]
[tex]\\ \tt\Rrightarrow \dfrac{3}{4}(-2)^4-\dfrac{(-2)^2}{2}-(-2)-\left(\dfrac{3}{4}(-3)^4-\dfrac{(-3)^2}{2}+3\right)[/tex]
[tex]\\ \tt\Rrightarrow 12-2+2-(\dfrac{243}{4}-\dfrac{9}{2}+2)[/tex]
[tex]\\ \tt\Rrightarrow 12-(\dfrac{225}{4}+2)[/tex]
[tex]\\ \tt\Rrightarrow 12-\dfrac{233}{4}[/tex]
[tex]\\ \tt\Rrightarrow \dfrac{48-233}{4}[/tex]
[tex]\\ \tt\Rrightarrow \dfrac{-185}{4}[/tex]
[tex]\\ \tt\Rrightarrow 46(approx)\neq 0[/tex]
It has a zero in between-3 and -2
Answer:
see explanation
Step-by-step explanation:
Evaluate f(x) for x = - 3 and - 2
f(- 3) = 3(- 3)² - 10(- 3) + 9 = 3(- 27) + 30 + 9 = - 81 + 39 = - 42
Then (- 3, - 42 ) is below the x- axis
f(- 2) = 3(- 2)³ - 10(- 2) + 9 = 3(- 8) + 20 + 9 = - 24 + 29 = 5
Then (- 2, 5 ) is above the x- axis
Since f(x) is below the x- axis at x = - 3 and above the x- axis at x = - 2
Then it must cross the x- axis between x = - 3 and x = - 2
Indicating there is a real zero between - 3 and - 2
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.