Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
1.255 L
Explanation:
Assuming that carbon dioxide acts as an ideal gas given the following conditions, using the ideal gas equation shown below
[tex]pV \ = \ nRT[/tex],
and since
[tex]n \ = \ \displaystyle\frac{m}{M_{r}}[/tex],
rewriting and rearranging the prior equation to make the variable [tex]V[/tex] the subject, yields
[tex]V \ = \ \displaystyle\frac{mRT}{pM_{r}}[/tex],
where [tex]V[/tex] is the volume occupied by the gas, [tex]m[/tex] is the mass of the gas, [tex]R[/tex] is the gas constant, [tex]T[/tex] is the temperature in Kelvins, [tex]p[/tex] is the pressure exerted by the gas and [tex]M_{r}[/tex] is the molecular weight of the gas molecule.
Therefore, plugging the given values into the rearranged equation,
[tex]V \ = \ \displaystyle\frac{(2.2 \ \text{g})(0.08314 \ \text{L} \ \text{bar} \ \text{mol}^{-1} \ \text{K}^{-1})(27 \ + \ 275) \text{K}}{(1 \ \text{bar})(12 + 2 \times16)\text{g mol}^{-1}} \\ \\ V \ = \ 1.255 \ \text{L} \quad \text{(4 s.f.)}[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.