Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Answer:
Find the value of x and y in coordinate form, that'll be the point of intersection.
Question 1
[tex]{ \rm{y = {x}^{2} - 3x + 4 }} \\ { \boxed{ \tt{but \: y = x + 1 \: }}} \\ \\ { \rm{(x + 1) = {x}^{2} - 3x + 4 }} \\ \\ { \rm{ {x}^{2} - 4x + 3 = 0 }} \\ \\ { \rm{(x - 3)(x - 1) = 0}} \\ \\ { \boxed{ \rm{x_{1} = 3 \: \: and \: \: x _{2} = 1}}} \\ \\ { \boxed{ \tt{remember \: y = x + 1}}} \\ \\ { \rm{y _{1} = 4 \: \: and \: \: y _{2} = 2 }}[/tex]
Therefore, points of intersection are two
Answer: (3, 4) and (1, 2)
Question 2:
Following the steps as in question 1
[tex]{ \rm{y = {x}^{2} - 4}} \\ \\{ \rm{2x - 4 = {x}^{2} - 4}} \\ \\ { \rm{ {x}^{2} = 2x }} \\ \\ { \boxed{ \rm{x = 2}}} \\ { \tt{remember : \: y = 2x - 4 }} \\ { \boxed{ \rm{y = 0}}}[/tex]
Answer: (2, 0)
Answer:
Below in bold.
Step-by-step explanation:
1) y=x^2-3x+4 and y=x+1
Using substitution for y :
x + 1 = x^2 - 3x + 4
x^2 - 4x + 3 = 0
(x - 3)(x - 1) = 0
x = 1, 3.
If x = 1, y = 1-3+4 = 2 and
if x = 3, y = 9-9+4 = 4.
So the points of intersection are (1, 2) and (3, 4)
Distance between them = √[(3-1)^2 + (4-2)^2 ] = √8.
2) y=x^2-4 and y=2x-4
2x - 4 = x^2 - 4
x^2 - 2x = 0
x(x - 2) = 0
x = 0, 2
When x = 0, y = -4 and
when x = 2, y = 0
So the points are (0,-4) and (2, 0)
So distance between the 2 points = √[(2-0)^2 + (0--4)^2)] = √20.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.