Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

i) Express Z1 in polar Form
a) Z1=1-(2-√3)i (complex number)


I Express Z1 In Polar Form A Z1123i Complex Number class=

Sagot :

Step-by-step explanation:

hope it will help you thank you

View image smaran2020

Answer:

[tex]z_1=1-(2-\sqrt{3})i=2\sqrt{2-\sqrt{3}}[cos(\frac{23\pi}{12} )+isin(\frac{23\pi}{12} )][/tex]

Step-by-step explanation:

Recall that [tex]a+bi=r(cos\theta+isin\theta)[/tex] where [tex]r=\sqrt{a^2+b^2}[/tex] and [tex]\theta=tan^{-1}(\frac{b}{a})[/tex].

Since [tex]a=1[/tex] and [tex]b=-2+\sqrt{3}[/tex], then [tex]r=\sqrt{(1)^2+(-2+\sqrt{3})^2}=2\sqrt{2-\sqrt{3}}[/tex] and [tex]\theta=tan^{-1}(\frac{-2+\sqrt{3}}{1})=-\frac{\pi}{12}=\frac{23\pi}{12}[/tex].

Therefore, [tex]z_1=1-(2-\sqrt{3})i=2\sqrt{2-\sqrt{3}}[cos(\frac{23\pi}{12} )+isin(\frac{23\pi}{12} )][/tex]