Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Block a, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0. 20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block b, with a mass of 3. 0 kg, is attached to the dangling end of the string. The acceleration of b is:.

Sagot :

Consult the attached free body diagram.

Use Newton's second law to set up several equations:

• net force on block B

∑ F = F[tension] - (3.0 kg) g = (3.0 kg) a

Note that we take the positive direction to be "upward".

Equivalently,

F[tension] = (3.0 kg) a + 29.4 N

• net force on block A parallel to the incline

∑ F = (10 kg) g sin(30°) - F[tension] ± F[friction] = (10 kg) a

Note that we take "down the incline" to be the positive direction.

The sign of the frictional force depends on which direction block A moves along the incline. To determine which way the block will slide, suppose for a moment that there is no friction so that the equation reduces to

49 N - F[tension] = (10 kg) a

If we combine this equation with the one we got from block B, we eliminate F[tension] and find

(F[tension] - 29.4 N) + (49 N - F[tension]) = (3.0 kg) a + (10 kg) a

⇒   (13.0 kg) a = 19.6 N

⇒   a ≈ 1.5 m/s²

Since this acceleration is positive, we know block A wants to slide down the incline. Then F[friction] points in the negative direction (up the plane), so that

∑ F = (10 kg) g sin(30°) - F[tension] - F[friction] = (10 kg) a

or more simply,

49 N - F[tension] - F[friction] = (10 kg) a

and upon substituting F[tension] from above,

49 N - ((3.0 kg) a + 29.4 N) - F[friction] = (10 kg) a

49 N - (3.0 kg) a - 29.4 N - F[friction] = (10 kg) a

F[friction] = 19.6 N - (13 kg) a

• net force on A perpendicular to the incline

∑ F = F[normal] - (10 kg) g cos(30°) = 0

It follows that

F[normal] = (10 kg) g cos(30°) ≈ 85 N

so that

F[friction] = µ F[normal] ≈ 0.20 (85 N) = 17 N

Substitute F[friction] and solve for the acceleration a :

17 N ≈ 19.6 N - (13 kg) a

(13 kg) a ≈ 2.6 N

a ≈ 0.20 m/s²

View image LammettHash