At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

the foci for the hyperbola (x-2)^2/36-(y+1)^2/64=1 are (2,-1+4sqrt7) and (2,-1-4sqrt7 true or false?

Sagot :

Using the equation of the hyperbola, it is found that the statement is false.

Equation of an hyperbola:

The equation of an hyperbola of center [tex](x_0,y_0)[/tex] is given by:

[tex]\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1[/tex]

The foci are given by: [tex](x_0 - c, y_0)[/tex] and [tex](x_0 + c, y_0)[/tex].

In which [tex]c^2 = a^2 + b^2[/tex]

In this problem, we have that the parameters are given by:

[tex]x_0 = 2, y_0 = -1, a^2 = 36, b^2 = 64[/tex].

Then:

[tex]c^2 = a^2 + b^2[/tex]

[tex]c^2 = 100[/tex]

[tex]c = 10[/tex]

The foci are given by:

[tex](x_0 - c, y_0) = (2 - 10, -1) = (-8, -1)[/tex]

[tex](x_0 + c, y_0) = (2 + 10, -1) = (12, -1)[/tex]

Hence, the statement is false.

To learn more about equation of the hyperbola, you can take a look at https://brainly.com/question/20776156