Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
keeping in mind that perpendicular lines have negative reciprocal slopes, let's check for the slope of the equation above
[tex]\begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\qquad \qquad y = \stackrel{\stackrel{m}{\downarrow }}{3}x-5[/tex]
well then therefore
[tex]\stackrel{\textit{perpendicular lines have \underline{negative reciprocal} slopes}} {\stackrel{slope}{3\implies \cfrac{3}{1}} ~\hfill \stackrel{reciprocal}{\cfrac{1}{3}} ~\hfill \stackrel{negative~reciprocal}{-\cfrac{1}{3}}}[/tex]
so we're really looking for the equation of a line with slope of -1/3 and that passes through (1, -3 )
[tex](\stackrel{x_1}{1}~,~\stackrel{y_1}{-3})\qquad \qquad \stackrel{slope}{m}\implies -\cfrac{1}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{(-3)}=\stackrel{m}{-\cfrac{1}{3}}(x-\stackrel{x_1}{1})\implies y+3=-\cfrac{1}{3}x+\cfrac{1}{3} \\\\\\ y=-\cfrac{1}{3}x+\cfrac{1}{3}-3\implies y=-\cfrac{1}{3}x-\cfrac{8}{3}[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.