Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
The number of ways the skaters can finish the competition is 40,320 ways
The different ways 3 of the skaters finish first, second and third is 56 ways
Given the following
- Number of skaters featured = 8 skaters
If the skaters finish the competition, the number of different ways the skaters finish the competition is expressed as:
8! = 8*7*6*5*4*3*2
8! = 56*30*24
8! = 40,320.
The number of ways the skaters can finish the competition is 40,320 ways
If 3 of the skaters finish first, second and third, the number of ways this can be done is given as:
8C3 = 8!/(8-3)!3!
8C3 = 8!/5!3!
8C3 = 8*7*6*5!/5!3!
8C3 = 56 ways
Hence the different ways 3 of the skaters finish first, second and third is 56 ways
Learn more on combination here: https://brainly.com/question/11732255
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.