Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using probability concepts, it is found that she could use a binomial distribution with [tex]n = 3[/tex] and [tex]p = \frac{1}{3}[/tex] to estimate the probability that the next three books she selects are all literature.
For each book she selects, there are only two possible outcomes, either it is a literature book, or it is not. The probability of a book selected being a literature book is independent of any other book, hence, the binomial distribution is used to solve this question.
Binomial probability distribution
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- Next three books selected, hence [tex]n = 3[/tex].
- She has an equal number of fiction, literature, and poetry books, hence, the probability of each book selected being a literature book is [tex]p = \frac{1}{3}[/tex]
Hence, she could use a binomial distribution with [tex]n = 3[/tex] and [tex]p = \frac{1}{3}[/tex] to estimate the probability that the next three books she selects are all literature.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
Answer:
Number Cube
Let 1, 6= Literature
Let 2, 4= Fiction
Let 3, 5= Poetry
Roll the cube 3 times, Repeat
It has to be equal probability for all three
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.