At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Using probability concepts, it is found that she could use a binomial distribution with [tex]n = 3[/tex] and [tex]p = \frac{1}{3}[/tex] to estimate the probability that the next three books she selects are all literature.
For each book she selects, there are only two possible outcomes, either it is a literature book, or it is not. The probability of a book selected being a literature book is independent of any other book, hence, the binomial distribution is used to solve this question.
Binomial probability distribution
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- Next three books selected, hence [tex]n = 3[/tex].
- She has an equal number of fiction, literature, and poetry books, hence, the probability of each book selected being a literature book is [tex]p = \frac{1}{3}[/tex]
Hence, she could use a binomial distribution with [tex]n = 3[/tex] and [tex]p = \frac{1}{3}[/tex] to estimate the probability that the next three books she selects are all literature.
You can learn more about the binomial distribution at https://brainly.com/question/24863377
Answer:
Number Cube
Let 1, 6= Literature
Let 2, 4= Fiction
Let 3, 5= Poetry
Roll the cube 3 times, Repeat
It has to be equal probability for all three
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.