Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
well, the remainder theorem says that if the polynomial f(x) has a factor of (x-a), then if we just plug in the "a" in f(x) it'll gives a remainder, assuming (x-a) is indeed a factor, then that remainder must be 0, so if f(a) = 0 then indeed (x-a) is a factor of f(x). After all that mumble jumble, let's proceed, we have (x+1), that means [ x - (-1) ], so if we plug in -1 in f(x), we should get 0, or f(-1) = 0, let's see if that's true.
[tex]\begin{array}{llrll} f(-1)&=&2(-1)^3-7(-1)^2-5(-1)+4\\\\ &&2(-1)-7(1)-5(-1)+4\\\\ &&-2-7+5+4\\\\ &&-9+9\\ &&0&~~\checkmark \end{array}[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.