Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex](x - 2)^{2} + (y - 1)^{2} = 17[/tex]
Step-by-step explanation:
The current equation of the circle is:
⇒ [tex]x^{2} + y^{2} - 4x - 2y + 10 = 0[/tex]
In order to get it into the standard form;
⇒ [tex](x - a)^{2} + (y - b)^{2} = r^{2}[/tex]
We must complete the square;
⇒ [tex](x - 2)^{2} - 4 + (y - 1) - 1 + 10 = 0[/tex]
Now, collect like terms and rearrange;
⇒ [tex](x - 2)^{2} + (y - 1)^{2} = -5?[/tex]
We now know that the Centre is at the point (2, 1).
We can use the distance formula to find the radius;
⇒ [tex]d = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}[/tex]
⇒ [tex]d = \sqrt{(6 - 2)^{2} + (2 - 1)^{2}}[/tex]
⇒ [tex]\sqrt{17}[/tex]
Therefore the radius squared is 17.
Now substitute into our equation:
⇒ [tex](x - 2)^{2} + (y - 1)^{2} = 17[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.