Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
Step-by-step explanation:
We can eliminate options C and D quite quickly because factoring either one would have one equation be y = x and the other either y = 72x - 96 or y = 72x + 108. Neither of these added to x will give either option A or B
so that leaves E.
72x² – 204x + 144 = 0
we can find the zeros
x = (204 ± √(204² - 4(72)(144))) / (2(72))
x = (204 ± 12) / 144
x = 1.5
x = 4/3
so the equation has factors
(x - 1.5)(x - 4/3)
and therefore also a factor in their product
x² - ([tex]\frac{17}{6}[/tex])x + 2
which is 1/72 of the original quadratic
so all factors of E are
72(x - 1.5)(x - 4/3)
now we need to distribute factors of 72 among the other two factors so that when we add them together the x¹ terms are either 16 or 17 and the x⁰ terms sum to -12. let "a" and "b" be the factors of 72.
ab = 72
a = 72/b
-1.5a - 4b/3 = -12
1.5a + 4b/3 = 12
1.5(72/b) + 4b/3 = 12
108/b + 4b/3 = 12
324/b + 4b = 36
324 + 4b² = 36b
81 + b² = 9b
b² - 9b + 81 = 0
b = (9 ±√(9² - 4(1)(81))) / 2(1))
b = (9 ± √-243) / 2
as both of these roots are imaginary numbers
there is no valid solution to this problem as posed
IF we allow a slight edit to answer B, we can factor 72 into 9•8
y = 8(x - 1.5) y = 9(x - 4/3)
y = 8x - 12 y = 9x - 12
so the sum of the two would be 17x - 24
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.