Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Recall the inverse function theorem: if f(x) has an inverse, and if f(a) = b and a = f⁻¹(b), then
f⁻¹(f(x)) = x ⇒ (f⁻¹)'(f(x)) • f'(x) = 1 ⇒ (f⁻¹)'(f(x)) = 1/f'(x)
⇒ (f⁻¹)'(b) = 1/f'(a)
Let b = 10. Then pick the function f(x) such that f(a) = 10 and f'(a) = -8 for some number a.
The decreasing function which f⁻¹'(10) = -1/8 is f(x) = -2x³ - 2x + 14
How to determine the function?
To do this, we make use of the following inverse function theorem.
Given that f(a) = b then a = f⁻¹(b)
The above means that:
If f⁻¹(10) = 1/8
Then f(1/8) = 10
From the list of options, we have:
f(x) = -2x³ - 2x + 14
Set f(x) = 10
-2x³ - 2x + 14 = 10
Subtract 10 from both sides
-2x³ - 2x + 4 = 0
Divide through by -2
x³ + x - 2 = 0
Expand
(x - 1)(x² + x + 2) = 0
Split
x - 1 = 0 or x² + x + 2 = 0
The equation x² + x + 2 = 0 has no real solution
So, we have:
x - 1 = 0
Solve for x
x = 1
Differentiate function f(x)
f'(x) = -(6x² + 2)
Take the inverse of both sides
[tex]\frac{1}{f'(x)} = \frac{1}{-(6x\² + 2)}[/tex]
Substitute 10 for x
[tex]\frac{1}{f'(1)} = \frac{1}{-(6 * 1\² + 2)}[/tex]
[tex]\frac{1}{f'(1)} = -\frac{1}{8}[/tex]
This means that:
f⁻¹'(10) = -1/8
Hence, the function which f⁻¹'(10) = -1/8 is f(x) = -2x³ - 2x + 14
Read more about inverse functions at:
https://brainly.com/question/14391067
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.