Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Let f(x) = 5x + 12. Find f^−1(x).

Sagot :

gmany

Answer:

[tex]\huge\boxed{f^{-1}(x)=\dfrac{1}{5}x-3}[/tex]

Step-by-step explanation:

[tex]f(x)=5x+15\to y=5x+15\\\\\text{exchange x to y and vice versa}\\\\x=5y+15\\\\\text{solve for}\ y\\\\5y+15=x\qquad|\text{subtract 15 from both sides}\\\\5y=x-15\qquad|\text{divide both sides by 5}\\\\y=\dfrac{1}{5}x-3[/tex]

Answer:

[tex]f^{-1}(x)=\frac{x-12}{5}[/tex]

Step-by-step explanation:

Given:

[tex]f(x)=5x+12[/tex]

Replace f(x) with y:

[tex]y=5x+12[/tex]

Switch variables and solve for y:

[tex]x=5y+12[/tex]

[tex]x-12=5y[/tex]

[tex]\frac{x-12}{5}=y[/tex]

Simplify:

[tex]\frac{1}{5}x-\frac{12}{5}=y[/tex]

Replace y with f^-1(x):

[tex]f^{-1}(x)=\frac{1}{5}x-\frac{12}{5}[/tex]

Therefore, the inverse function for [tex]f(x)=5x+12[/tex] is [tex]f^{-1}(x)=\frac{1}{5}x-\frac{12}{5}[/tex].

Notice how in the graph attached of the inverse functions that they are symmetric about the line y=x. This is a crucial characteristic of inverse functions.

View image goddessboi