Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
The amount or level of relationship between the tickets in the bags is
described by the correlation coefficient.
Response:
- The correlation coefficient, r is approximately 0.75
Method by which the correlation coefficient is obtained
Required:
Based on a similar question online, the value of the correlation coefficient, r, is to be determined.
The table of values is presented as follows;
[tex]\begin{tabular}{c|c|c|}\underline{Draw}& \underline{ Bag 1}& \underline{Bag 2}\\Draw 1&2&4\\Draw 2&4&5\\Draw 3 &1&3\\Draw 4&6&4\\Draw 5&7&9\end{array}\right][/tex]
The mean of the first bag, [tex]\overline{x}_1[/tex] = 4
Standard deviation of the first bag, s₁ = 2.5
Mean of the second bag, [tex]\mathbf{\overline x_2}[/tex] = 5
Standard deviation of the second bag, s₂ = 2.3
The sample size from each bag, n = 5
The given regression formula is presented as follows;
[tex]\displaystyle r = \mathbf{ \frac{1}{n - 1} \cdot \sum \left(\frac{x - \overline x}{s_x} \right) \cdot \left(\frac{y - \overline{y}}{s_y} \right)}[/tex]
By calculation using the above data in the table on MS Excel, we have;
[tex]\overline x_1[/tex] = 4, s₁ = 2.54951
[tex]\overline x_2[/tex] = 5, s₂ = 2.345208
The following table of values can be calculated;
[tex]\begin{array}{|c|c|c|c|}&\dfrac{x - \overline x_i}{s_x} & \dfrac{y - \overline y_i}{s_y} & \left(\dfrac{x - \overline x_i}{s_x} \right)\times \left(\dfrac{y - \overline y_i}{s_y} \right) \\&&& \\i = 1&-0.78446&-0.4264&0.334497\\i = 2&0&0&0\\i = 3&-1.1767&-0.8528&1.00349\\i = 4 &0.784464&-0.4264&-0.3345\\i = 5&1.176697&1.705606&\underline{2.006981}\\&&&\\ \ \sum ()&&&3.010471\end{array}\right][/tex]
Therefore;
[tex]\displaystyle \sum \left(\frac{x - \overline x}{s_x} \right) \cdot \left(\frac{y - \overline{y}}{s_y} \right) = \mathbf{ 3.010471}[/tex]
[tex]\displaystyle r = \frac{1}{5-1} \times 3.010471 = 0.752618[/tex]
Rounding off to the nearest hundredth, we have;
- The correlation coefficient, r ≈ 0.75
Possible question options are;
- 0.56
- 0.50
- 0.70
- 0.75
Learn more about correlation coefficient here:
https://brainly.com/question/14753067
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.