Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
The equation for the graph is obtained by making use of the relationship
between the directrix and the eccentricity.
Correct response:
- [tex]The \ equation \ of \ the \ graph \ is ; \ \underline{\dfrac{y^2}{5} - \dfrac{x^2}{4} = 1}[/tex]
Method by which the above equation is found
The general form of the equation of a vertical hyperbola is given as follows;
[tex]\mathbf{\dfrac{(y - k)^2}{a^2} - \dfrac{(x - h)^2}{b^2}} = 1[/tex]
From the given options, the center of the hyperbola, (h, k) = (0, 0)
The points on the hyperbola are;
[tex]\left(2\frac{1}{4} , \ 0 \right)[/tex], [tex]\left(-2\frac{1}{4} , \, 0 \right )[/tex]
(-3, 0) and (3, 0)
The given directrices are;
[tex]y = \frac{5}{3}[/tex] and [tex]y = -\frac{5}{3}[/tex]
- [tex]Directrix, \ y = \mathbf{\pm \dfrac{a}{e}}[/tex]
- [tex]Eccentricity, \ e = \mathbf{ \dfrac{\sqrt{a^2 + b^2} }{a}}[/tex]
Therefore;
- [tex]Directrix, \, y = \mathbf{\dfrac{a^2}{\sqrt{a^2 + b^2} }}[/tex]
We have;
a² = 5
√(a² + b²) = 3
Therefore;
5 + b² = 9
b² = 4
- Which gives the equation of the parabola as [tex]\underline{\dfrac{y^2}{5} - \dfrac{x^2}{4} = 1}[/tex], which is the option;
- y squared over 5 minus x squared over 4 equals 1
Learn more about a hyperbola here:
https://brainly.com/question/2364331
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.