Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer:
See below
Step-by-step explanation:
A) The quadratic function that models this data is [tex]f(x)=-0.02x^2+1.6x+2[/tex] which you can view in the graph attached (done by regression).
B) [tex]f(65)=-0.02(65)^2+1.6(65)+2=21.5[/tex], or 21.5 miles
C) Set [tex]f(x)=16[/tex] and solve for x:
[tex]f(x)=-0.02x^2+1.6x+2[/tex]
[tex]16=-0.02x^2+1.6x+2[/tex]
[tex]0=-0.02x^2+1.6x-14[/tex]
[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]
[tex]x=\frac{-1.6\pm\sqrt{(1.6)^2-4(-0.02)(-14)}}{2(-0.02)}[/tex]
[tex]x=\frac{-1.6\pm\sqrt{2.56-1.12}}{-0.04}[/tex]
[tex]x=\frac{-1.6\pm\sqrt{1.44}}{-0.04}[/tex]
[tex]x=\frac{-1.6\pm1.2}{-0.04}[/tex]
[tex]x_1=\frac{-1.6+1.2}{-0.04}[/tex]
[tex]x_1=\frac{-0.4}{-0.04}[/tex]
[tex]x_1=10<55[/tex]
[tex]x_2=\frac{-1.6-1.2}{-0.04}[/tex]
[tex]x_2=\frac{-2.8}{-0.04}[/tex]
[tex]x_2=70>55[/tex]
Since [tex]70>55[/tex], then 10mph is the maximum speed you could drive and still reach the gas station that is 16 miles away when the speed limit is 55.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.